

AAL-010-001407 **Seat No.** _____

B. B. A. (Sem. IV) (CBCS) Examination

April / May - 2016

407 : Business Statistics-II

(New Course)

Faculty Code : 010

Subject Code : 001407

Time : $2\frac{1}{2}$ Hours]

[Total Marks : **70**

Instructions : (1) Attempt all six questions.
(2) Figures to the right indicate marks.

1 **M.C.Q.**

20

(1) In S.Q.C. control limits are calculated on the basis of

- (A) 3σ
- (B) 2σ
- (C) σ
- (D) None

(2) Difference between maximum and minimum value of sample is called

- (A) Range
- (B) Standard deviation
- (C) Mean
- (D) None

(3) If for C chart U.C.L. = 18, L.C.L. = 0 then \bar{C} = _____.
(A) 12
(B) 9
(C) 6
(D) 3

(4) P and nP charts are based on _____ distribution.
(A) Poisson
(B) Binomial
(C) Normal
(D) None

(5) Forecasting is process of making an estimate of _____.
(A) Present
(B) Past
(C) Future
(D) None

(6) Relationship between a_{ij} , x_{ij} and x_j is given by
(A) $a_{ij} = x_{ij} x_j$
(B) $x_j = a_{ij} x_{ij}$
(C) $x_{ij} = a_{ij} x_j$
(D) None

(7) There are _____ normal equations are used to fit a second degree parabola.
(A) 4
(B) 1
(C) 2
(D) 3

(8) There is an assumption in input-output analysis that every industry produces _____ things.
(A) Four
(B) Three
(C) Two
(D) One

(9) What happens when maximum and minimum value of the game are same ?
(A) Saddle Point exists
(B) No solution exists
(C) Solution is mixed
(D) None

(10) The size of the payoff matrix of a game can be reduced by using the principle of

- game inversion
- dominance
- Rotation reduction
- Game transpose

(11) When the sum of gains of one player is equal to the sum of losses to another player in the game, this situation is known as _____ game.

- Biased
- Fair
- Zero Sum
- All of the above

(12) Game theory models are classified by the

- number of players
- sum of all payoffs
- number of strategies
- All of the above

(13) If $Z_{\text{cal}} > Z_{\text{tab}}$ then H_0 is _____

- rejected
- accepted
- (A) and (B) both
- None

(14) S.E. (P) = _____

- $\sqrt{\frac{PQ}{n}}$
- $\frac{PQ}{\sqrt{n}}$
- $\frac{\sqrt{PQ}}{n}$
- None

(15) Degree of freedom for 3×2 contingency table is

- (A) 1
- (B) 2
- (C) 3
- (D) 6

(16) $\chi^2_{cal} = \text{_____}$

(A) $\sum \left(\frac{O-E}{E} \right)^2$

(B) $\sum \frac{(O-E)^2}{E}$

(C) $\sum \frac{O-E}{E^2}$

(D) $\sum \frac{O-E}{E}$

(17) _____ test is used in analysis of variance

- (A) χ^2
- (B) Z
- (C) F
- (D) T

(18) Which test is use for testing $H_0 : \mu_1 = \mu_2 = \mu_3$?

- (A) T test
- (B) F test
- (C) Analysis of variance
- (D) None

(19) _____ test is used to test $H_0 : \delta = 0$

- (A) χ^2
- (B) Z
- (C) F
- (D) T

(20) For comparing the variances of two indep. smal samples _____ test is used

- (A) T
- (B) Z
- (C) χ^2
- (D) F

2 Explain : 10

- (1) Theory of runs
- (2) Difference between the charts for variables and charts for attributes.

OR

2 The following table gives mean and range of 10 samples 10 each of size 5. Draw \bar{X} and R charts and state your conclusion.

Sample No	1	2	3	4	5	6	7	8	9	10
\bar{X}	40	42	41	40	42	43	40	40	42	45
R	3	2	5	2	1	4	3	2	5	4

3 Explain : 10

- (1) Two person zero sum game
- (2) Saddle point

OR

3 Solve the following game : 10

$$\begin{bmatrix} 30 & 40 & -80 \\ 0 & 15 & -20 \\ 90 & 20 & 50 \end{bmatrix}$$

4 Explain the forecasting method of input-output analysis. **10**
 Give its assumptions.

OR

4 Fit a second degree parabola for the following data and **10**
 estimate the likely sales for the year 2016.

Year	2010	2011	2012	2013	2014
Sales	10	20	30	50	40
(Rs. lakhs)					

5 (a) Explain : **5**
 (i) Type I and type II errors
 (ii) Degrees of freedom
 (b) The average marks of 80 boys is 78 with s.d. of **5**
 12 and the average marks of 120 girls is 75 with s.d. of 15. Can it be said that the average marks of boys is more than that of girls ?

OR

5 A sample of 200 families each having 3 children gave the **10**
 following distribution of boys. Test the hypothesis that boys and girls are equally probable.

Boys	0	1	2	3
No. of families	40	60	62	38

6 (a) Explain the difference between large sample test and **5**
 small sample test.
 (b) The following information is obtained from a sample **5**
 of 5 observations.

$$\Sigma x = 18, \quad \Sigma x^2 = 80$$

Test the hypothesis that the mean of population is 4.

OR

6 Analyze the following data completely

10

Treatment	A	20	30	20	40	30
	B	50	20	20	30	40
	C	60	20	30	50	40
